当前位置: 首页 > 学术报告 > 正文

Partition congruences and partition ranks

发布时间:2020-10-12 15:51:19 发布人:孙怡东  审核人:李天镇

 

报告题目:Partition congruences and partition ranks

人:谷珊珊  教授(南开大学组合数学中心)

会议时间:2020/10/16周五上午10:00-11:30

   点击链接直接加入会议:https://meeting.tencent.com/s/n9IRUyfxJovF
   会 议 ID:791 778 477

报告摘要:

A partition of a positive integer n is a nonincreasing sequence of positive integers whose sum is n. In this talk, based on Ramanujan’s theta functions, we obtain many infinite families of congruences for some partition functions. Furthermore, we discuss rank differences of overpartitions modulo 4 and 8. Especially, we establish some relations between the generating functions of the rank differences and some mock theta functions.

个人简历:

谷珊珊,南开大学教授、博导,主要研究方向为代数组合学,在q-级数恒等式的证明与推广、分拆同余等方面取得了一系列成果,主要结果发表在Advances in Mathematics,Mathematics of Computation,Journal of Combinatorial Theory. Series A等期刊。先后主持多项国家自然科学基金,入选天津市创新人才推进计划“青年科技优秀人才”和天津市“131”创新型人才第二层次,荣获天津市数学会青年学术奖一等奖。现任中国运筹学会图论组合分会理事和天津市工业与应用数学学会理事。